资源类型

期刊论文 46

年份

2023 2

2022 3

2021 4

2020 1

2018 3

2016 5

2015 2

2014 4

2012 2

2011 4

2010 4

2009 6

2008 3

2007 2

2004 1

展开 ︾

关键词

CFD 3

住宅厨房 1

刮板输送机 1

压力驱动 1

大飞机 1

层流技术 1

弹射座椅 1

控制阀组 1

救生系统 1

气动 1

气动参数计算 1

气动噪音 1

气流组织 1

渗透汽化 1

翼梢小翼 1

翼身融合体 1

膜分离 1

膜蒸馏 1

计算流体力学 1

展开 ︾

检索范围:

排序: 展示方式:

Experimental and CFD analysis of nozzle position of subsonic ejector

Xilai ZHANG, Shiping JIN, Suyi HUANG, Guoqing TIAN

《能源前沿(英文)》 2009年 第3卷 第2期   页码 167-174 doi: 10.1007/s11708-009-0001-5

摘要: The influence of nozzle position on the performance of an ejector was analyzed qualitatively with free jet flow model. Experimental investigations and computational fluid dynamics (CFD) analysis of the nozzle position of the subsonic ejector were also conducted. The results show that there is an optimum nozzle position for the ejector. The ejecting coefficient reaches its maximum when the nozzle is positioned at the optimum and decreases when deviating. Moreover, the nozzle position of an ejector is not a fixed value, but is influenced greatly by the flow parameters. Considering the complexity of the ejector, CFD is reckoned as a useful tool in the design of ejectors.

关键词: ejector     nozzle position     ejecting coefficient     CFD    

A CFD study of the transport and fate of airborne droplets in a ventilated office: The role of droplet

《环境科学与工程前沿(英文)》 2022年 第16卷 第3期 doi: 10.1007/s11783-021-1465-8

摘要:

• Coulomb and Lennard−Jones forces were considered for droplet interactions.

关键词: Droplet interactions     Aerosols     Colloids     CFD     Transport     Fate    

Experimental study on bubble behavior and CFD simulation of large-scale slurry bubble column reactor

Haoyi SUN, Tao LI, Weiyong YING, Dingye FANG

《化学科学与工程前沿(英文)》 2010年 第4卷 第4期   页码 515-522 doi: 10.1007/s11705-010-0516-7

摘要: Slurry bubble column reactors (SBCR) is a three-phase fluidized reactor with outstanding advantages compared with other reactors and is difficult to scale-up due to lack of information on hydrodynamics and mass transfer over a wide range of operating conditions of commercial interest. In this paper, an experiment was conducted to investigate the bubble behavior in SBCR with a height of 5600 mm and an interior diameter of 480 mm. Bubble rise velocity, bubble diameter, and gas holdup in different radial and axial positions are measured in SBCR using four-channel conductivity probe. Tap water, air, and glass beads (mean diameter 75–150 μm) are used as liquid, gas, and solid phases, respectively. It shows that hydrodynamic parameters have good regularity in SBCR. Moreover, a commercial computational fluid dynamics (CFD) package, Fluent, was used to simulate the process in SBCR. The simulations were carried out using axi-symmetric 2-D grids. Data obtained from experiment and CFD simulation are compared, and results show that the tendency of simulation is almost uniform with the experiment, which can help to obtain further understanding about multiphase flow process and establish a model about the synthesis of alcohol ether fuel in SBCR.

关键词: SBCR     four-channel conductivity probe     hydrodynamics     CFD    

Characterization of aerodynamic performance of wind-lens turbine using high-fidelity CFD simulations

Islam HASHEM, Aida A. HAFIZ, Mohamed H. MOHAMED

《能源前沿(英文)》 2022年 第16卷 第4期   页码 661-682 doi: 10.1007/s11708-020-0713-0

摘要: Wind-lens turbines (WLTs) exhibit the prospect of a higher output power and more suitability for urban areas in comparison to bare wind turbines. The wind-lens typically comprises a diffuser shroud coupled with a flange appended to the exit periphery of the shroud. Wind-lenses can boost the velocity of the incoming wind through the turbine rotor owing to the creation of a low-pressure zone downstream the flanged diffuser. In this paper, the aerodynamic performance of the wind-lens is computationally assessed using high-fidelity transient CFD simulations for shrouds with different profiles, aiming to assess the effect of change of some design parameters such as length, area ratio and flange height of the diffuser shroud on the power augmentation. The power coefficient ( ) is calculated by solving the URANS equations with the aid of the SST model. Furthermore, comparisons with experimental data for validation are accomplished to prove that the proposed methodology could be able to precisely predict the aerodynamic behavior of the wind-lens turbine. The results affirm that wind-lens with cycloidal profile yield an augmentation of about 58% increase in power coefficient compared to bare wind turbine of the same rotor swept-area. It is also emphasized that diffusers (cycloid type) of small length could achieve a twice increase in power coefficient while maintaining large flange heights.

关键词: shroud     diffuser-augmented wind turbine (DAWT)     Betz limit     aerodynamics     computational fluid dynamics (CFD)    

Application of different CFD multiphase models to investigate effects of baffles and nanoparticles on

Ali SHAHMOHAMMADI,Arezou JAFARI

《化学科学与工程前沿(英文)》 2014年 第8卷 第3期   页码 320-329 doi: 10.1007/s11705-014-1437-7

摘要: In this work, the effect of baffles in a pipe on heat transfer enhancement was studied using computational fluid dynamics (CFD) in the presence of Al O nanoparticles which are dispersed into water. Fluid flow through the horizontal tube with uniform heat flux was simulated numerically and three dimensional governing partial differential equations were solved. To find an accurate model for CFD simulations, the results obtained by the single phase were compared with those obtained by three different multiphase models including Eulerian, mixture and volume of fluid (VOF) at Reynolds numbers in range of 600 to 3000, and two different nanoparticle concentrations (1% and 1.6%). It was found that multiphase models could better predict the heat transfer in nanofluids. The effect of baffles on heat transfer of nanofluid flow was also investigated through a baffled geometry. The numerical results show that at Reynolds numbers in the range of 600 to 2100, the heat transfer of nanofluid flowing in the geometry without baffle is greater than that of water flowing through a tube with baffle, whereas the difference between these effects (nanofluid and baffle) decreases with increasing the Reynolds number. At higher Reynolds numbers (2100–3000) the baffle has a greater effect on heat transfer enhancement than the nanofluid.

关键词: CFD simulation     heat transfer     nanofluid     baffle     single phase model     multiphase model    

CFD based combustion model for sewage sludge gasification in a fluidized bed

Yiqun WANG, Lifeng YAN

《化学科学与工程前沿(英文)》 2009年 第3卷 第2期   页码 138-145 doi: 10.1007/s11705-009-0050-7

摘要: Gasification is one potential way to use sewage sludge as renewable energy and solve the environmental problems caused by the huge amount of sewage sludge. In this paper, a three-dimensional Computational Fluid Dynamics (CFD) model has been developed to simulate the sewage sludge gasification process in a fluidized bed. The model describes the complex physical and chemical phenomena in the gasifier including turbulent flow, heat and mass transfer, and chemical reactions. The model is based on the Eulerian-Lagrangian concept using the non-premixed combustion modeling approach. In terms of the CFD software FLUENT, which represents a powerful tool for gasifier analysis, the simulations provide detailed information on the gas products and temperature distribution in the gasifier. The model sensitivity is analyzed by performing the model in a laboratory-scale fluidized bed in the literature, and the model validation is carried out by comparing with experimental data from the literature. Results show that reasonably good agreement was achieved. Effects of temperature and Equivalence Ratio (ER) on the quality of product syngas (H + CO) are also studied.

关键词: CFD     model     sewage sludge     gasification     syngas    

Simulation of bubble column reactors using CFD coupled with a population balance model

Tiefeng WANG

《化学科学与工程前沿(英文)》 2011年 第5卷 第2期   页码 162-172 doi: 10.1007/s11705-009-0267-5

摘要: Bubble columns are widely used in chemical and biochemical processes due to their excellent mass and heat transfer characteristics and simple construction. However, their fundamental hydrodynamic behaviors, which are essential for reactor scale-up and design, are still not fully understood. To develop design tools for engineering purposes, much research has been carried out in the area of computational fluid dynamics (CFD) modeling and simulation of gas-liquid flows. Due to the importance of the bubble behavior, the bubble size distribution must be considered in the CFD models. The population balance model (PBM) is an effective approach to predict the bubble size distribution, and great efforts have been made in recent years to couple the PBM into CFD simulations. This article gives a selective review of the modeling and simulation of bubble column reactors using CFD coupled with PBM. Bubble breakup and coalescence models due to different mechanisms are discussed. It is shown that the CFD-PBM coupled model with proper bubble breakup and coalescence models and interphase force formulations has the ability of predicting the complex hydrodynamics in different flow regimes and, thus, provides a unified description of both the homogeneous and heterogeneous regimes. Further study is needed to improve the models of bubble coalescence and breakup, turbulence modification in high gas holdup, and interphase forces of bubble swarms.

关键词: bubble column     computational fluid dynamics     bubble breakup and coalescence     population balance model     bubble size distribution    

Combustion mechanism development and CFD simulation for the prediction of soot emission during flaring

Anan Wang,Helen H. Lou,Daniel Chen,Anfeng Yu,Wenyi Dang,Xianchang Li,Christopher Martin,Vijaya Damodara,Ajit Patki

《化学科学与工程前沿(英文)》 2016年 第10卷 第4期   页码 459-471 doi: 10.1007/s11705-016-1594-y

摘要: Industrial Flares are important safety devices to burn off the unwanted gas during process startup, shutdown, or upset. However, flaring, especially the associated smoke, is a symbol of emissions from refineries, oil gas fields, and chemical processing plants. How to simultaneously achieve high combustion efficiency (CE) and low soot emission is an important issue. Soot emissions are influenced by many factors. Flare operators tend to over-steam or over-air to suppress smoke, which results in low CE. How to achieve optimal flare performance remains a question to the industry and the regulatory agencies. In this paper, regulations in the US regarding flaring were reviewed. In order to determine the optimal operating window for the flare, different combustion mechanisms related to soot emissions were summarized. A new combustion mechanism (Vsoot) for predicting soot emissions was developed and validated against experimental data. Computational fluid dynamic (CFD) models combined with Vsoot combustion mechanism were developed to simulate the flaring events. It was observed that simulation results agree well with experimental data.

关键词: flare     soot emission     combustion mechanism     CFD simulation    

CFD simulation on shell-and-tube heat exchangers with small-angle helical baffles

Minhua ZHANG,Fang MENG,Zhongfeng GENG

《化学科学与工程前沿(英文)》 2015年 第9卷 第2期   页码 183-193 doi: 10.1007/s11705-015-1510-x

摘要: Shell-and-tube heat exchanger with helical baffles is superior to that with segmental baffles in reducing pressure drop, eliminating dead zone and lowering the risks of vibration of tube bundle. This paper focused on the small-angle helical baffles that have been merely reported in open literature. These baffles are noncontinuous helical baffles with a helix angle of 10° to 30°, and their shapes are 1/4 ellipse, 1/4 sector and 1/3 sector. To assess the integrative performance, /? is employed, and the calculated results show that among the three baffle shapes the heat exchangers with a 1/4 sector helical baffle have the lowest pressure drop. At = 10° and 20°, 1/4 sector helical baffle heat exchangers show the best integrative performance; at = 30°, 1/4 ellipse and 1/4 sector helical baffle heat exchangers perform almost the same. For the study of helix angles, we found that 30° has the best integrative performance at low mass flow rate, almost the same as 20° at high mass flow rate.

关键词: heat transfer     pressure drop     helical baffle     CFD    

CFD simulation of the hydrodynamics in an internal air-lift reactor with two different configurations

Mona EBRAHIMIFAKHAR, Elmira MOHSENZADEH, Sadegh MORADI, Mostafa MORAVEJI, Mahmoud SALIMI

《化学科学与工程前沿(英文)》 2011年 第5卷 第4期   页码 455-462 doi: 10.1007/s11705-011-1116-x

摘要: Computational fluid dynamics (CFD) was used to investigate the hydrodynamic parameters of two internal airlift bioreactors with different configurations. Both had a riser diameter of 0.1 m. The model was used to predict the effect of the reactor geometry on the reactor hydrodynamics. Water was utilized as the continuous phase and air in the form of bubbles was applied as the dispersed phase. A two-phase flow model provided by the bubbly flow application mode was employed in this project. In the liquid phase, the turbulence can be described using the - model. Simulated gas holdup and liquid circulation velocity results were compared with experimental data. The predictions of the simulation are in good agreement with the experimental data.

关键词: airlift reactor     gas holdup     liquid circulation velocity     bubbly flow     computational fluid dynamics (CFD)    

CFD simulation on membrane distillation of NaCl solution

Zhaoguang XU, Yanqiu PAN, Yalan YU

《化学科学与工程前沿(英文)》 2009年 第3卷 第3期   页码 293-297 doi: 10.1007/s11705-009-0204-7

摘要: A computational fluid dynamics (CFD) simulation that coupled an established heat and mass transfer model was carried out for the air-gap membrane distillation (AGMD) of NaCl solution to predict mass and heat behaviors of the process. The effects of temperature and flowrate on fluxes were first simulated and compared with available experimental data to verify the approach. The profiles of temperature, temperature polarization factor, and mass flux adjacent to the tubular carbon membrane surface were then examined under different feed Reynolds number in the computational domain. Results show that the temperature polarization phenomena can be reduced, and mass flux can be enhanced with increase in the feed Reynolds number.

关键词: membrane distillation     computational fluid dynamics (CFD) simulation     temperature polarization     carbon membrane    

Applications of traditional pump design theory to artificial heart and CFD simulation

WANG Yingpeng, SONG Xinwei, YING Chuntong

《能源前沿(英文)》 2008年 第2卷 第4期   页码 504-507 doi: 10.1007/s11708-008-0059-5

摘要: A novel heart pump model was obtained by improving the traditional axial pump design theory with the consideration of working and hydraulic situations for artificial hearts. The pump head range and the velocity triangle were introduced and an iterative approach was utilized for the initial model. Moreover, computational fluid dynamics (CFD) simulations were performed to determine relevant model parameters. The results show that this procedure can be used for designing a series of high-efficiency artificial heart pumps.

关键词: computational     high-efficiency artificial     iterative approach     artificial     traditional    

住宅厨房通风的数值分析

邹声华,李萍,翁培奋,罗一新

《中国工程科学》 2004年 第6卷 第12期   页码 69-72

摘要: 将我国现有的住宅厨房通风方式分为三类,运用CFD分析方法,分别对它们的通风特性进行了分析,认为在建筑设计方面,只要布置好厨房的门、窗或排风口,就可获得较好的气流组织,有效排放厨房的污染物,提高厨房的空气质量

关键词: 住宅厨房     通风方法     CFD     气流组织    

Vortex-induced vibration of stay cable under profile velocity using CFD numerical simulation method

Wenli CHEN, Hui LI,

《结构与土木工程前沿(英文)》 2009年 第3卷 第4期   页码 357-363 doi: 10.1007/s11709-009-0060-z

摘要: Vortex-induced vibration (VIV) of a stay cable subjected to a wind profile is numerically simulated through combining computational fluid dynamics (CFD) code CFX 10.0 and computational structural dynamics (CSD) code ANSYS 10.0. A stay cable with the inclined angle of 30° is used as the numerical model. Under a profile of mean wind speed, unsteady aerodynamic lift coefficients of the cable have been analyzed in both time domain and frequency domain when VIV occurs. The results indicate that the lift coefficient wave response of the stay cable under a wind profile is different from that of an infinitely long cable under a uniform flow in water (i.e., without consideration of profile) obtained by direct numerical simulation. Cable oscillations can severely affect the unsteady aerodynamic frequencies, change flow field distribution near the cable and affect the vortex shedding in the wake.

关键词: stay cable     fluid-structure interaction     numerical simulation     vortex-induced vibration    

Heat transfer and fluid flow analysis of an artificially roughened solar air heater: a CFD based investigation

Anil Singh YADAV,J. L. BHAGORIA

《能源前沿(英文)》 2014年 第8卷 第2期   页码 201-211 doi: 10.1007/s11708-014-0297-7

摘要: In this paper, the effect of rib (circular sectioned) spacing on average Nusselt number and friction factor in an artificially roughened solar air heater (duct aspect ratio, AR= 5:1) is studied by adopting the computational fluid dynamics (CFD) approach. Numerical solutions are obtained using commercial software ANSYS FLUENT v12.1. The computations based on the finite volume method with the semi-implicit method for pressure-linked equations (SIMPLE) algorithm have been conducted. Circular sectioned transverse ribs are applied at the underside of the top of the duct, i.e., on the absorber plate. The rib-height-to-hydraulic diameter ratio ( ) is 0.042. The rib-pitch-to-rib-height ( ) ratios studied are 7.14, 10.71, 14.29 and 17.86. For each rib spacing simulations are executed at six different relevant Reynolds numbers from 3800 to 18000. The thermo-hydraulic performance parameter for = 10.71 is found to be the best for the investigated range of parameters at a Reynolds number of 15000.

关键词: heat transfer     pressure drop     thermo-hydraulic performance parameter    

标题 作者 时间 类型 操作

Experimental and CFD analysis of nozzle position of subsonic ejector

Xilai ZHANG, Shiping JIN, Suyi HUANG, Guoqing TIAN

期刊论文

A CFD study of the transport and fate of airborne droplets in a ventilated office: The role of droplet

期刊论文

Experimental study on bubble behavior and CFD simulation of large-scale slurry bubble column reactor

Haoyi SUN, Tao LI, Weiyong YING, Dingye FANG

期刊论文

Characterization of aerodynamic performance of wind-lens turbine using high-fidelity CFD simulations

Islam HASHEM, Aida A. HAFIZ, Mohamed H. MOHAMED

期刊论文

Application of different CFD multiphase models to investigate effects of baffles and nanoparticles on

Ali SHAHMOHAMMADI,Arezou JAFARI

期刊论文

CFD based combustion model for sewage sludge gasification in a fluidized bed

Yiqun WANG, Lifeng YAN

期刊论文

Simulation of bubble column reactors using CFD coupled with a population balance model

Tiefeng WANG

期刊论文

Combustion mechanism development and CFD simulation for the prediction of soot emission during flaring

Anan Wang,Helen H. Lou,Daniel Chen,Anfeng Yu,Wenyi Dang,Xianchang Li,Christopher Martin,Vijaya Damodara,Ajit Patki

期刊论文

CFD simulation on shell-and-tube heat exchangers with small-angle helical baffles

Minhua ZHANG,Fang MENG,Zhongfeng GENG

期刊论文

CFD simulation of the hydrodynamics in an internal air-lift reactor with two different configurations

Mona EBRAHIMIFAKHAR, Elmira MOHSENZADEH, Sadegh MORADI, Mostafa MORAVEJI, Mahmoud SALIMI

期刊论文

CFD simulation on membrane distillation of NaCl solution

Zhaoguang XU, Yanqiu PAN, Yalan YU

期刊论文

Applications of traditional pump design theory to artificial heart and CFD simulation

WANG Yingpeng, SONG Xinwei, YING Chuntong

期刊论文

住宅厨房通风的数值分析

邹声华,李萍,翁培奋,罗一新

期刊论文

Vortex-induced vibration of stay cable under profile velocity using CFD numerical simulation method

Wenli CHEN, Hui LI,

期刊论文

Heat transfer and fluid flow analysis of an artificially roughened solar air heater: a CFD based investigation

Anil Singh YADAV,J. L. BHAGORIA

期刊论文